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Abstract. In this paper, firstly, we study analytically the topological features of a family of hierarchical
lattices (HLs) from the view point of complex networks. We derive some basic properties of HLs controlled
by a parameter q: scale-free degree distribution with exponent γ = 2+ln 2/(ln q), null clustering coefficient,
power-law behavior of grid coefficient, exponential growth of average path length (non-small-world), fractal
scaling with dimension dB = ln(2q)/(ln 2), and disassortativity. Our results show that scale-free networks
are not always small-world, and support the conjecture that self-similar scale-free networks are not assorta-
tive. Secondly, we define a deterministic family of graphs called small-world hierarchical lattices (SWHLs).
Our construction preserves the structure of hierarchical lattices, including its degree distribution, fractal
architecture, clustering coefficient, while the small-world phenomenon arises. Finally, the dynamical pro-
cesses of intentional attacks and collective synchronization are studied and the comparisons between HLs
and Barabási-Albert (BA) networks as well as SWHLs are shown. We find that the self-similar property of
HLs and SWHLs significantly increases the robustness of such networks against targeted damage on hubs,
as compared to the very vulnerable non fractal BA networks, and that HLs have poorer synchronizability
than their counterparts SWHLs and BA networks. We show that degree distribution of scale-free networks
does not suffice to characterize their synchronizability, and that networks with smaller average path length
are not always easier to synchronize.

PACS. 89.75.Da Systems obeying scaling laws – 05.45.Df Fractals – 36.40.Qv Stability and fragmentation
of clusters – 05.45.Xt Synchronization; coupled oscillators

1 Introduction

Topological characteristics, such as scale-free degree distri-
bution, small-world effect, fractal scaling and degree corre-
lations, have recently attracted much attention in network
science. The last few years have witnessed a tremendous
activity devoted to the characterization and understand-
ing of networked systems [1–5]. Small-world property [6]
and scale-free behavior [7] are two unifying concepts con-
stituting our basic understanding of the organization of
real-life complex systems. Small-world property refers to
the one that the expected number of edges (links) needed
to pass from one arbitrarily selected node (vertex) to an-
other one is low, which grows at most logarithmically with
the number of nodes. Scale-free behavior means the ma-
jority of nodes in a network have only a few connections to
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other nodes, whereas some nodes are connected to many
other nodes in the network. This poses a fundamental
question how these two characteristics are related. It has
been observed that small-world property and scale-free be-
havior are not independent [8]: scale-free networks, nor-
mally, have extremely short average path length (APL),
scaling logarithmically or slower with system size. Is this
universal?

In fact, the above mentioned two properties (i.e. small-
world property and scale-free behavior) do not provide suf-
ficient characterizations of the real-world systems. It has
been observed that real networks exhibit ubiquitous de-
gree correlations among their nodes [9–15]. This translates
in the observation that the degrees of nearest neighbor
nodes are not statistically independent but mutually cor-
related in practically every network imaginable. Correla-
tions play an important role in the characterization of
network topology, and have led to a first classification of
complex networks [12]. A series of recent measurements



260 The European Physical Journal B

indicate social networks are all assortative, while all bio-
logical and technological networks disassortative: in social
networks there is a tendency for the hubs to be linked to-
gether, in biological and technological network the hubs
show the opposite tendency, being primarily connected to
less connected nodes. Correlations are now a very relevant
issue, especially in view of the important consequences
that they can have on dynamical processes taking place
on networks [16–19].

Recently, it has been discovered by the application of a
renormalization procedure that diverse real networks, such
as the WWW, protein-protein interaction networks and
metabolic networks, exhibit fractal scaling and topologi-
cal self-similarity [20–24]. Fractal scaling implies that in a
network the minimum number of node-covering boxes NB

of linear size �B scales with respect to �B as a power-law
of NB, with an exponent that is given by a finite fractal
dimension dB [20]. Self-similarity refers to the invariant
scale-free distribution probability to find a node with de-
gree k, P (k) ∼ k−γ , i.e. the exponent γ remains the same
under the renormalization with different box sizes [20,25].
In complex networks, fractality and self-similarity do not
always imply each other: a fractal network model is self-
similar, while a self-similar network is not always frac-
tal [24]. One can obtain the fractal dimension dB by mea-
suring the ratio of NB over the total number of nodes
N in the network, which satisfies NB/N ∼ �−dB

B . After
renormalizing the networks, the degree kB(�B) of a node
in the renormalized network versus the largest degree khub

inside the box that was contracted to one node with de-
gree khub in the renormalization process exhibits a scaling
behavior: kB(�B) = s(�B)khub, where s(�B) is assumed to
scale like s(�B) ∼ �−dk

B with dk being the degree expo-
nent of the boxes. In self-similar scale-free networks, the
relation between the three indexes γ, dB and dk satisfies
γ = 1 + dB/dk [20].

Correlations and topological fractality are important
properties for many real-world complex systems. Then a
natural fundamental question is raised how the two char-
acteristics relate to each other. Recent researches [21,23]
have shown that self-similar scale-free networks are not
assortative, and the qualitative feature of disassortativity
is scale-invariant under renormalization. Moreover, self-
similarity and disassortativity of scale-free networks make
such networks more robust against a sinister attack on
nodes with large degree, as compared to the very vulner-
able non fractal scale-free networks [21].

However, do small-world property and scale-free be-
havior always go along? How do systems have evolved into
self-similar disassortative scale-free networks? How the dy-
namical processes such as intentional attack and synchro-
nization are influenced by the topological fractality and
disassortativity of scale-free networks? Such a series of im-
portant questions still remain open. To relate these ques-
tions, in this paper we therefore launch a study seeking a
better understanding of the relations among these topo-
logical properties.

It is of interest to study above important questions
with deterministic methods. Because of their strong ad-

vantages, deterministic network models have received
much attention [26–40]. First, the method of generating
deterministic networks makes it easier to gain a visual un-
derstanding of how networks are shaped, and how do dif-
ferent nodes relate to each other [26]; moreover, determin-
istic networks allow to compute analytically their topolog-
ical properties, which have played a significant role, both
in terms of explicit results and a guide to and a test of sim-
ulated and approximate methods [26–40]. On the other
hand, deterministic networks can be easily extended to
produce random variants which exhibit the classical char-
acteristics of many real-life systems [41–45] .

Inspired by the above mentioned questions, here we
first introduce a deterministic family of networks. These
networks are called hierarchical lattices (HLs), which yield
exact renormalization-group solutions [46–51]. From the
perspective of complex network, we show that HLs are
simultaneously scale-free, self-similar and disassortative,
but lack the small-world property. Then we present a de-
terministic construction of a class of small-world hierarchi-
cal lattices (SWHLs), which preserve the basic structure
properties including power law degree distribution, self-
similarity, and disassortativeness, while lead to the small-
world effect. Finally, we investigate the effects of network
structures on the dynamics taking place in them.

This article is organized as follows. In Section 2, we
introduce the construction of hierarchical lattices (HLs)
and study their topological features including the degree
distribution, moments, clustering coefficient, grid coeffi-
cient, self-similarity, degree correlations, and average path
length (APL). The detailed exact derivation about APL
is shown in Appendix A. In Section 3, we propose the
deterministic construction of the small-world hierarchical
lattices (SWHLs) and study their properties. In Section 4,
attack tolerance of HLs is studied and the comparisons be-
tween HLs and Barabási-Albert (BA) networks are shown.
In Section 5, we do a comparative investigation of synchro-
nization in HLs, SWHLs and BA networks. Section 6 is
devoted to our conclusions.

2 Hierarchical lattices

In this section, from topological perspective of complex
networks, we present the construction and the basic prop-
erties such as degree distribution, clustering coefficient,
average path length (APL), fractality, and correlations of
the hierarchical lattices (HLs).

2.1 Construction of the lattice

The hierarchical lattices [49] are constructed in an iter-
ative manner as shown in Figure 1. We denote the hier-
archical lattices (networks) after t generations by H(q, t),
q ≥ 2 and t ≥ 0. The networks are constructed as follows:
for t = 0, H(q, 0) is an edge connecting two points. For
t ≥ 1, H(q, t) is obtained from H(q, t−1). We replace each
of the existing edges in H(q, t−1) by the connected cluster
of edges on the right of Figure 1. The growing process is
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Fig. 1. Iterative construction method of the hierarchical lat-
tices for some limiting cases.

Fig. 2. Examples of the hierarchical lattices for some partic-
ular cases of q = 2, q = 3, and q = 4, showing the first three
steps of the iterative process.

repeated t times, with the infinite lattices obtained in the
limit t → ∞. Figure 2 shows the growing process of the
networks for three particular cases of q = 2, q = 3, and
q = 4. It should be noted that in the hierarchical lattice
of q = 2 case [46], the Migdal-Kadanoff [52,53] recursion
relations with dimension 2 and length rescaling factor 2
are exact.

Griffiths and Kaufman provided two explanations for
the construction of the hierarchical lattices [48], which are
called “aggregation” and “miniaturization”. In essence,
these two interpretations reflect the self-similar structure
of the hierarchical lattices, which allow one to calculate
analytically their topological characteristics.

Next we compute the numbers of nodes (vertices) and
links (edges) in H(q, t). Let Lv(t) and Le(t) be the num-
bers of vertices and edges created at step t, respectively.
Note that each of the existing edges yields q nodes, and
the addition of each new node leads to two new edges. By

construction, for t ≥ 1, we have

Lv(t) = qLe(t − 1) (1)

and
Le(t) = 2Lv(t). (2)

Considering the initial condition Lv(0) = 2 and Le(0) = 1,
it follows that

Lv(t) = q (2q)t−1 (3)
and

Le(t) = (2q)t. (4)
Thus the number of total nodes Nt and edges Et present
at step t is

Nt =
t∑

ti=0

Lv(ti) =
q(2q)t + 3q − 2

2q − 1
(5)

and

Et = Le(t) = (2q)t, (6)

respectively.

2.2 Degree distribution

Let ki(t) be the degree of node i at step t. Then by con-
struction, it is not difficult to find following relation:

ki(t) = q ki(t − 1), (7)

which expresses a preferential attachment [7]. If node i is
added to the network at step ti, ki(ti) = 2 and hence

ki(t) = 2 qt−ti . (8)

Therefore, the degree spectrum of the network is discrete.
It follows that the degree distribution is given by

P (k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lv(0)
Nt

=
2

q(2q)t+3q−2
2q−1

for ti = 0

Lv(ti)
Nt

=
q (2q)ti−1

q(2q)t+3q−2
2q−1

for ti ≥ 1

0 otherwise

(9)

and that the cumulative degree distribution [3,27] is

Pcum(k) =
∑

ρ≤ti

Lv(ρ)
Nt

=
q(2q)ti + 3q − 2
q(2q)t + 3q − 2

. (10)

Substituting for ti in this expression using ti = t − ln k
2

ln q

gives

Pcum(k) =
q (2q)t

(
k
2

)− ln(2q)
ln q + 3q − 2

q(2q)t + 3q − 2

≈
(

k

2

)−(1 + ln 2
ln q )

for large t. (11)

So the degree distribution follows a power law behavior
with the exponent γ = 2 + ln 2/(ln q). For q = 2, equa-
tion (11) recovers the result of the particular case p = 0
previously obtained in reference [51].
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〈k2〉t =

⎧
⎪⎪⎨

⎪⎪⎩

4q(2q − 1)

q + 3q−2
(2q)t

qt − 2t

2t(q2 − 2q)
+

2(2q − 1)qt

q · 2t + 3q−2
qt

for q > 2

4t(3t + 3)

4t + 2
for q = 2

−−−−→
t → ∞

⎧
⎨

⎩

4(q − 1)(2q − 1)

q(q − 2)

( q

2

)t

for q > 2

3(t + 1) for q = 2.
(15)

〈k3〉t =
2t+2q3t+3 − 2t+1q3t+2 + 2t+3q3t+1 − 2t+2q3t − 22t+4qt+1 + 22t+3qt

22tqt+3 − 22t+1qt+1 + 3 · 2tq3 − 3q · 2t+1 − 2t+1q2 + 2t+2
. (16)

2.3 Moments

Information on how the degree is distributed among the
nodes of a undirected network can be obtained either by
the degree distribution P (k), or by the calculation of the
moments of the distribution. The n-moment of P (k) is
defined as:

〈kn〉 =
∑

k

knP (k). (12)

The first moment 〈k〉 is the mean degree. At arbitrary step
t, the average vertex degree of H(q, t) is

〈k〉t =
2Et

Nt
=

2(2q − 1)(2q)t

q(2q)t + 3q − 2
. (13)

For large t, it is small and approximately equal to a finite
value 4 − 2/q.

We can also calculate higher moments of the distribu-
tion P (k). For instance, the second moment, which mea-
sures the fluctuations of the connectivity distribution, is
given by

〈k2〉t =
1
Nt

t∑

ti=0

nv(ti) [k(ti, t)]
2
, (14)

where k(ti, t) is the degree of a node at step t which was
generated at step ti. This quality expresses the average
of degree square over all nodes in the network. It has
large impact on the behavior of dynamical processes tak-
ing place in networks [54,55].

Substituting equations (3, 5, 8) into equation (14), we
derive

see equation (15) above.

In this way, second moment of degree distribution 〈k2〉
has been calculated explicitly, and the result shows that
it becomes infinite for large t. In fact, because the degree
exponent γ ≤ 3, all n-moments (n > 2) diverge. For ex-
ample, we can analogously get the third moment as

see equation (16) above.

For the special case of q = 2, it reduces to

〈k3〉q=2,t =
9 · 23t − 6 · 22t

22t + 2
, (17)

which diverges as an exponential law when t is very large.

2.4 Clustering coefficient

The clustering coefficient defines a measure of the level
of cohesiveness around any given node. By definition, the
clustering coefficient [6] Ci of node i is the ratio between
the number of edges ei that actually exist among the ki

neighbors of node i (i.e. the number of triangles attached
to a vertex i) and its maximum possible value, ki(ki−1)/2,
i.e., Ci = 2ei/ki(ki − 1). The clustering coefficient of the
whole network is the average of all individual C′

is.
Since there are no triangles in the hierarchial lattices,

the clustering coefficient of every node and their aver-
age value in H(q, t) are both zero by definition. However,
over the years generalized clustering coefficients probing
higher-order loops have been proposed [56,57]. Clearly in
these hierarchial lattices the number of squares (loops of
length 4) is significantly large, below we will seek to quan-
tify this.

2.5 Grid coefficient

As pointed out above, for hierarchial lattices the usual
clustering coefficient is unable to quantify the order un-
derlying their structure, which is represented by a grid-
like frame, that can be quantified by evaluating the
frequency of rectangular loops (cycles of length 4). We
introduce the grid coefficient that allows us to uncover
the presence of a surprising level of triangular grid order-
ing in the hierarchial lattices. For simplicity, we call cycles
of length 4 quadrilaterals. The grid coefficient [57] Gi of
node i is defined as the ratio of number of existing quadri-
laterals passing by node i, Xi, to all the possible number
of quadrilaterals attached to node i, Yi.

Note that each quadrilateral involving node i is consist
of i itself plus three outer nodes, according to whose nature
quadrilaterals can be classified, then the grid coefficient
can be further decomposed into two cases (see Fig. 3): if
all the outer nodes are directly attached to i, they form a
primary quadrilateral ; otherwise, if one of the outer nodes
is a second neighbor of i, the cycle they form is a secondary
quadrilateral. If a node i with degree ki has ki,2nd second
neighbors, then the maximum possible number of primary
quadrilaterals is Y p

i = 3×(ki
3 ) = ki(ki−1)(ki−2)/2, while

the maximum possible number of secondary quadrilater-
als is Y s

i = ki,2ndki(ki − 1)/2. In this way, for investi-
gating the grid properties of the hierarchial lattices, one
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Fig. 3. (a) An example of a primary quadrilateral, where the
three outer nodes are directly connected to node i. (b) An
example of a secondary quadrilateral, where one outer node
(empty square) is a second neighbor of node i.

can define three quantities: the primary grid coefficient,
Gp

i = Xp
i /Y p

i , the secondary grid coefficient Gs
i = Xs

i /Y s
i ,

and the total grid coefficient Gi = (Xp
i + Xs

i )/(Y p
i + Y s

i ),
where Xp

i and Xs
i are the actually existing number of

primary and secondary quadrilaterals involving i, respec-
tively. Averaging these quantities over all nodes, we can
obtain the respective average grid coefficients.

There are only secondary quadrilaterals in HLs, so
Gp

i = 0. The analytical expression for the secondary grid
coefficient Gs

i of the individual node i with degree k can be
derived exactly. In H(q, t), for a node with degree great
than two, there is a one-to-one correspondence between
the second neighbors k2nd of the node and its degree k:
k2nd = k/q. On the other hand, by construction, for a
node with degree k > 2, for each of its second neighbor,
there are just (q

2) secondary quadrilaterals passing by the
node and the second neighbor simultaneously, thus, the
existing number of secondary quadrilaterals is Xs = k

q (q
2).

Therefore, for a node of degree k > 2, the exact value of
its grid coefficient is

G(k) =
q(q − 1)
k(k − 1)

. (18)

So the grid coefficient is a function of degree k, following
a power-law behavior of the form k−2 for large k. It is
interesting to note that a similar scaling has been observed
in several real-life networks [57].

2.6 Fractality

In fact, the hierarchial lattices grow as a inverse renormal-
ization procedure. To find the fractal dimension, we follow
the mathematical framework proposed in reference [21].
By construction, for large t, the different quantities grow
as: ⎧

⎨

⎩

Nt 	 2q Nt−1,
ki(t) = q ki(t − 1),
Dt = 2 D(t−1).

(19)

The first equation is analogous to the multiplicative pro-
cess naturally found in many population growth systems.
The second relation denotes the preferential attachment
mechanism [7], which yields the power law degree distri-
bution. The third equation describes the change of the

diameter Dt of the hierarchial lattices H(q, t), where Dt is
defined as by the longest shortest path between all pairs
of nodes in H(q, t).

From the relations given by equation (19), we know
that these quantities Nt, ki(t) and Dt increase by a factor
of 2q, q and 2, respectively. Then between any two times
t1, t2 (t1 < t2), we can easily obtain the following relation:

⎧
⎨

⎩

Dt2 = 2t2−t1
Dt1 ,

Nt2 = (2q)t2−t1 Nt1 ,
ki(t2) = qt2−t1 ki(t1).

(20)

From equation (20), we can derive the scaling exponents in
terms of the microscopic parameters: the fractal dimension
is dB = ln(2q)/(ln 2), and the degree exponent of boxes is
dk = ln q/(ln 2). The exponent of the degree distribution
satisfies γ = 1 + dB/dk = 2 + ln 2/(ln q), giving the same
γ as that obtained in the direct calculation of the degree
distribution, see equation (11).

Note that in a class of deterministic models called
pseudo-fractals, although the number of their nodes in-
crease exponentially, the additive growth in the diameter
with time implies that these networks are small world.
These models do not capture the fractal topology found
in diverse complex networks [26–36].

2.7 Degree correlations

As the field of complex networks has progressed, degree
correlations [9–15] have been the subject of particular in-
terest, because they can give rise to some interesting net-
work structure effects. Degree correlations can be conve-
niently measured by means of the conditional probability
P (k′|k), being defined as the probability that a link from
a node of degree k points to a node of degree k′. In un-
correlated networks, this conditional probability does not
depend on k, it takes the form P (k′|k) = k′P (k′)/〈k〉 [14].

Although degree correlations are formally character-
ized by P (k′|k), the direct evaluation of the conditional
probability P (k′|k) in real-life systems is a very difficult
task, and usually gives extremely noisy results because of
their finite size. To overcome this problem, another in-
teresting quantity related to two node correlations, called
average nearest-neighbor degree (ANND), has been pro-
posed. It is a function of node degree, and is more conve-
nient and practical in characterizing degree-degree corre-
lations, defined by [10]

knn(k) =
∑

k′
k′P (k′|k). (21)

If there are no degree correlations, equation (21) gives
knn(k) = 〈k2〉/〈k〉, i.e. knn(k) is independent of k. Degree
correlations are usually quantified by reporting the nu-
merical value of the slope of knn(k) as a function of node
degree k.

Degree correlations quantified by ANND have led to a
first classification of complex networks. When knn(k) in-
creases with k, it means that nodes have a tendency to
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d̄t =
1243 · 2t − 475 · 2t+23t + 275 · 2t+33t + 275 · 2t32t+1 + 19 · 23t+232t+1 − 11 · 3t+24t+1

44(2 + 2t3t+1)(7 + 2t3t+1)

−−−−→
t → ∞19

33
2t, (25)

connect to nodes with a similar or larger degree. In this
case the network is defined as assortative [12,13]. In con-
trast, if knn(k) is decreasing with k, which implies that
nodes of large degrees are likely to have the nearest neigh-
bors with small degrees, then the network is said to be
disassortative.

We can exactly calculate knn(k) for the hierarchial lat-
tices. By construction, for nodes with degree greater than
2, the degrees of their neighbors are 2. Then we have

knn(k > 2) = 2. (22)

For those nodes having degree 2, their average nearest-
neighbor degrees are

knn(2) =
1

2Lv(t)

( t′i=t−1∑

t′i=0

Lv(t′i) [k(t′i, t)]
2

)

=

⎧
⎨

⎩

2 t for q = 2,
2q

q − 2

[(q

2

)t

− 1
]

for q > 2.
(23)

Thus knn(2) grows linearly or exponentially with time for
q = 2 and q > 2, respectively. As the nodes with degree
2 are only connected to higher degree nodes, knn(2) is
significantly high.

Degree correlations can also be described by a Pearson
correlation coefficient r of degrees at either end of a link.
It is defined as [12,13,34,58]

r =
〈k〉〈k2knn(k)〉 − 〈k2〉2

〈k〉〈k3〉 − 〈k2〉2 . (24)

If the network is uncorrelated, the correlation coefficient
equals zero. Disassortative networks have r < 0, while
assortative graphs have a value of r > 0. Substituting
equations (8, 15, 16) into equation (24), we can easily see
that for t > 1, r of H(q, t) is always negative, indicating
disassortativity.

Disassortative features in protein interaction networks
were found and explained by Maslov and Sneppen [9]
on the level of interacting proteins and genetic regula-
tory interactions. According to their results links between
highly connected nodes are systematically suppressed,
while those between highly connected and low-connected
pairs of proteins are favored.

2.8 Average path length

Shortest paths play an important role both in the trans-
port and communication within a network and in the char-
acterization of the internal structure of the network. We

represent all the shortest path lengths of H(q, t) as a ma-
trix in which the entry dij is the geodesic path from node
i to node j, where geodesic path is one of the paths con-
necting two nodes with minimum length. The maximum
value of dij is called the diameter of the network. A mea-
sure of the typical separation between two nodes in the
hierarchical lattices is given by the average path length
d̄t, also known as characteristic path length, defined as
the mean of geodesic lengths over all couples of nodes at
the tth level.

For general q, it is not easy to derive a closed formula
for the average path length d̄t of H(q, t). However, in Ap-
pendix A, we have obtained exact analytic expressions for
d̄t of H(3, t), while the exact value of d̄t of H(2, t) has
been obviously obtained in reference [51]. For q = 3 we
find

see equation (25) above.
leading to an exponential growth in the APL. Since in this
case, Nt ∼ 6t for large t, we have d̄t ∼ N

log6 2
t . While in

another special case q = 2, d̄t ∼ N
1/2
t [51]. So for small q,

the hierarchical lattices are not small worlds. We conjec-
ture that for H(q, t), their APL scales as d̄t ∼ N

log(2q) 2

t ,
which is similar to that of a hypercubic lattice of dimen-
sion 1

log(2q) 2 . Low-dimensional regular lattices do not show
the small-world behavior of typical node-node distances.
It is straightforward to show that for a regular lattice in
D dimensions which has the shape of a square or (hy-
per)cube of side l, and therefore has N = lD nodes, the
APL increases as l, or equivalently as N1/D [59].

So we have shown that d̄t of H(q, t) has the power-
law scaling behavior of the number of nodes Nt. It is not
hard to understand. As an example, let us look at the
scheme of the growth of a particular case q = 2. Each next
step in the growth of H(2, t) doubles the APL between a
fixed pair of nodes. The total numbers of nodes and edges
increase four-fold (asymptotically, in the infinite limit of
t), see equation (5). Thus the APL d̄t of H(2, t) grows as
a square power of the node number in H(2, t).

3 Small-world hierarchical lattices

In this section, we will discuss the construction and prop-
erties of small-world hierarchical lattices (SWHLs). Our
goal is to reduce the diameter enough so as to get a loga-
rithmically growing diameter, while maintaining the orig-
inal structure of hierarchical lattices studied in the pre-
ceding section. All these can be attained by adding a new
central point and connecting it with a certain set of orig-
inal nodes, which is akin to the ideas presented in refer-
ences [60–62].
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Fig. 4. (Color online) Construction of the small-world hierar-
chical lattices, with (a), (b) denoting SH1(2, 2) and SH2(2, 3),
respectively.

We denote the small-world hierarchical lattices as
SHm(q, t). From the previous section, we can know that
for every t ≥ 2 and m = 1, 2, 3, ..., t−1, H(q, t) can be seen
as (2q)t−m copies of H(q, m), with some node identifica-
tions. SHm(q, t) (1 ≤ m ≤ t− 1) is the graph obtained by
joining a new node to every hub (node of highest degree)
of every copy of H(q, m), see Figure 4. In other words, the
new node is connected to those old nodes introduced at
step t−m or earlier, thus the number of new edges is ex-
actly the number of vertices of H(q, t−m). For m = 0, the
new graph is out of the scope of SHm(q, t). In this case,
for simplicity, we also denote the new network SHm(q, t),
where the central node connects to all the nodes in H(q, t).

The diameter of this new graph depends on the value
of m. We will show that, for some of the values of m,
the diameter of SHm(q, t) exhibits a slow (logarithmic)
increase with the total number of network nodes. Thus,
this construction gives us small-world graphs. Next we
give the properties of small-world hierarchical lattices.

The order (number of all nodes) of SHm(q, t) is one
plus the order of H(q, t). The size (number of all edges) of
SHm(q, t) is the size of H(q, t), plus the number of added
edges. Since the number of added edges is the order of
H(q, t − m), according to equations (5) and (6), we can
easily see that the order and size of SHm(q, t) is Nm,t =
q(2q)t+5q−3

2q−1 and Em,t = (2q)t+1−(2q)t+q(2q)t−m+3q−2
2q−1 , re-

spectively.
Because the addition of the new node has little effect

on the degree distribution, SHm(q, t) also follow power
law degree distribution with the same degree exponent γ
as H(q, t). Additionally, for any m ≥ 1, SHm(q, t) have no
triangles, the clustering coefficient is zero as their counter-
parts H(q, t). Analogously, SHm(q, t) are self-similar with
the identical fractal dimension dB as H(q, t) [21,62].

Different from H(q, t), SHm(q, t) have small-world
property. For the sake of convenient expression, let us
denote by Diam[H(q, t)] the diameter of H(q, t) and by
Diam[SHm(q, t)] the diameter of SHm(q, t). Obviously,
Diam[H(q, t)] = 2t [51]. To compute Diam[SHm(q, t)]
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Fig. 5. (Color online) The dependence of average path length
(APL) of SHm(2, 5) and SHm(2, 6) on m. One can see that
APL increases very quickly as m grows.

we need only observe that, in H(q, m), every node is
at distance at most Diam[H(q, m)]/2 = 2m−1 from
the set of vertices of the hubs [62]. An upper bound
for Diam[SHm(q, t)] is Diam[H(q, m)] + 2 = 2m + 2.
It can easily be seen that this is also a lower bound.
Therefore, Diam[SHm(q, t)] = 2m + 2. Since the order
Nm,t of SHm(q, t) is q(2q)t+5q−3

2q−1 , if m ≤ log2 t, then
Diam[SHm(q, t)] ≤ t + 2 is small and scales logarith-
mically with the number of network nodes. Here we do
not give the exact expression for the average path length
(APL) of SHm(q, t), instead in Figure 5 we present APL
of SHm(q, t) as a function of m. It is shown that APL
becomes larger as m is increased.

To summarize, in the section, we proposed a construc-
tion of small-world hierarchical lattices. In the construc-
tion of these small-world lattices, the underlying structure
of the original lattices is preserved. We have shown that
all of these new graphs are fractal and have a logarithmic
diameter.

4 Relative robustness to intentional attacks

As discussed in previous section, close to many real-life
networks, the hierarchical lattices are simultaneously self-
similar and scale-free. Therefore, it is worthwhile to in-
vestigate the processes taking place upon them and di-
rectly compare these results with just scale-free networks
(like BA networks). These comparisons may give us deep
insight into the dynamic properties of networks. In the
following we will investigate intentional damage (attack)
and synchronization, respectively. This section is devoted
to the robustness, while next section is concerned with
collective synchronization behavior.

Robustness refers to the ability of a network to avoid
malfunctioning when a fraction of its constituents is dam-
aged. This is a topic of obvious practical reasons, as it
affects directly the efficiency of any process running on
top of the network, and it is one of the first issues to be
explored in the literature on complex networks [63]. Here
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Fig. 6. (Color online) Vulnerability under intentional attack
of a BA network with average degree 4 and a H(2, 8). Both
networks have the same degree exponent (γ = 3), the same
number of nodes (43, 692), and their clustering coefficient is
small. Moreover, by construction, SHm(2, 8) have similar ro-
bustness as H(2, 8), which rule out the effect of average path
length on targeted attack. Thus, the difference in the resilience
seen in this figure is attributed to fractality and the different
degree of anticorrelations.

we shall focus only on the topological aspects (especially
self-similarity) of robustness, caused by targeted removal
of nodes, because there is a strong correlation between
robustness and network topology [63–67].

One of the most important measures of the robustness
of a network is its integrity, which is characterized by the
presence of its giant connected component [63]. We call a
network robust if it contains a giant cluster comprised of
most of the nodes even after a fraction of its nodes are
removed. Then, to know network robustness, first of all,
one must study the variation of the giant component.

For the study of attack vulnerability of the network,
the selection procedure of the order in which vertices are
removed is an open choice [67]. One may of course maxi-
mize the destructive effect at any fixed number of removed
vertices. However, this requires the knowledge of the whole
network structure, and pinpointing the vertex to attack
in this way makes a very time-demanding computation. A
more tractable choice is to select the vertices in the de-
scending order of degrees in the initial network and then
to remove vertices one by one starting from the vertex
with the highest degree; this attack strategy will be used
in the present paper.

Figure 6 shows the performances of BA and hierarchial
lattices under intentional attack. We plot the relative size
of the largest cluster, s, after removing a fraction p of the
largest hubs for both networks. One can find that the non-
fractal scale-free BA networks are more sensitive to sabo-
tage of a small fraction of the nodes, leading support to the
view of Song et. al. [21]. While both networks collapse at
a finite fraction pc, evidenced by the decrease of s toward
zero, the fractal network has a significantly larger thresh-

old (pc ≈ 0.004) compared to the non-fractal threshold
(pc ≈ 0.001), the former threshold is about 4 times than
the latter, suggesting a significantly higher robustness of
the fractal networks to intentional attacks. Also, it is in-
teresting to note that for the hierarchical lattices, s is a
function of p with a staircase-like form.

It is not strange at all that a giant connected com-
ponent in self-similar networks is robust against the tar-
geted deletion of nodes, while non-fractal scale-free net-
works are extremely vulnerable to targeted attacks on the
hub. In non-fractal topologies, the hubs are connected and
form a central compact core, such that the removal of a
few of the largest hubs has catastrophic consequences for
the network. In self-similar networks, hubs are more dis-
persed (see Fig. 2), their disassortativity and self-similar
property significantly increases the robustness against tar-
geted attacks. This could explain why some real-life net-
works have evolved into a fractal and disassortative archi-
tecture [20,21].

5 Synchronization

The ultimate goal of the study of network structure is
to study and understand the workings of systems built
upon those networks. Recently, along with the study of
purely structural and evolutionary properties [1,2], there
has been increasing interest in the interplay between the
dynamics and the structure of complex networks [3–5].
One particular issue attracting much attention is the syn-
chronizability of oscillator coupling networks [68]. Syn-
chronization is observed in diverse natural and man-made
systems and is directly related to many specific problems
in a variety of different disciplines. It has found practical
applications in many fields including communications, op-
tics, neural networks and geophysics [69–74]. After study-
ing the relevant characteristics of network structure, which
is described in the previous sections, we will study the syn-
chronization behavior on the networks.

We follow the general framework proposed in [75,76],
where a criterion based on spectral techniques was estab-
lished to determine the stability of synchronized states on
networks. Consider a network of N identical dynamical
systems with linearly and symmetric coupling between os-
cillators. The set of equations of motion for the system are

ẋi = F(xi) + σ

N∑

j=1

GijH(xj), (26)

where ẋi = F(xi) governs the dynamics of each individ-
ual node, H(xj) is the output function and σ the cou-
pling strength, and Gij is the Laplacian matrix, defined
by Gii = ki if the degree of node i is ki, Gij = −1 if nodes
i and j are connected, and Gij = 0 otherwise.

Since matrix G is positive semidefinite and each rows
of it has zero sum, all eigenvalues of G are real and non-
negative and the smallest one is always equal to zero. We
order the eigenvalues as 0 = λ1 ≤ λ2 ≤ ... ≤ λN . Then one
can use the ratio of the maximum eigenvalue λN to the
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Fig. 7. (Color online) (Top) The eigenratio R as a function
of network order N for BA networks with average degree 4
and H(2, t). All quantities for BA networks are averaged over
50 realizations. (Bottom) The dependence of eigenratio R of
SHm(2, 5) and SHm(2, 6) on the value of m.

smallest nonzero one λ2 to measure the synchronizabil-
ity of the network [75,76]. If the eigenratio R = λN/λ2

satisfies R < α2/α1, we say the network is synchroniz-
able. Here the eigenratio R depends on the the network
topology, while α2/α1 depends exclusively on the dynam-
ics of individual oscillator and the output function. Ratio
R = λN/λ2 represents the synchronizability of the net-
work: the larger the ratio, the more difficult it is to syn-
chronize the oscillators, and vice versa.

After reducing the issue of synchronizability to finding
eigenvalues of the Laplacian matrix G, we now investi-
gate the synchronization of our networks. Figure 7 shows
the synchronizability of H(2, t), SHm(2, 5), SHm(2, 6), as
well as the BA networks. One can see that for the same
network order, R of the BA networks is much smaller
than that of hierarchical lattices H(2, t), which implies
that the synchronizability of the former is much bet-
ter. While for SHm(2, 5) and SHm(2, 6), the dependence
relation of eigenratio R(m) on m is more complicated:
R(0) < R(2) < R(1) < R(x|x > 2); for m > 2, R(m)
increases with m > 2.

Why coupling systems on the BA networks, H(2, t)
and SHm(2, t) exhibit very different synchronizability?

Previously reported results have indicated that underlying
network structures play significant roles in the synchroniz-
ability of coupled oscillators. However, the key structural
feature that determines the collective synchronization be-
havior remains unclear. Many works have discussed this
issue. Some authors believe that shorter APL tends to en-
hance synchronization [75,77,78]. In contrast, Nishikawa
et al. reported that synchronizability is suppressed as the
degree distribution becomes more heterogeneous, even for
shorter APL [79]. In reference [80], the authors asserted
that larger average node degree corresponds to better syn-
chronizability.

All these may rationally explain the relations between
synchronizability and network structure in some cases, but
do not well account for the difference of synchronizability
between the graphs under consideration: as known from
the preceding section, for fixed t, the APL of SHm(2, t)
increases with m, but R does not always decrease with
m; BA networks and H(2, t) have identical degree expo-
nent γ, while their synchronizability differs very much; in
addition, the average degree of SH1(2, t) is higher than
that of SH2(2, t), but the former is more difficult to syn-
chronize than the latter. All these show that the degree
distribution is generally not sufficient to characterize the
synchronizability of scale-free networks [81,82], and that
smaller average path length does not necessarily predict
better synchronizability [82]. We speculate that the syn-
chronizability on BA networks is better than on H(2, t)
and SHm(2, t) rests mainly with the self-similar structure.
The genuine reasons need further research.

6 Conclusions

In conclusion, we have studied a family of determinis-
tic networks called hierarchical lattices (HLs) from the
perspective of complex networks. The deterministic self-
similar construction allow one to derive analytic exact
expressions for the relevant features of HLs. Our results
shows that HLs exhibit many interesting topological prop-
erties: they follow a power-law degree distribution with ex-
ponent tuned from 2 to 3; their clustering coefficient is null
but their grid coefficient follows a power-law phenomenon;
they are not small-world, the APL scales like a power-law
in the number of nodes; they have a fractal topology with a
general fractal dimension; and they are disassortative net-
works. Our results indicate it is not true that a power-law
degree alone create small-world networks [83], and further
support the conjecture that scale-free networks with frac-
tal scaling are disassortative. The disassortativity prop-
erty is ease to understand by checking the growth process
of HLs, where the rich (large nodes) get richer but at the
expense of the poor (small nodes). In other words, the
hubs prefer to grow by connections with less-connected
nodes rather to other hubs, which leads to disassortativ-
ity. So we have found a good example — hierarchical lat-
tices — which show that self-similar scale-free networks
are preferably disassortative in their degree-degree corre-
lations.
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We have also introduced a deterministic construction
of a family of small-world hierarchical lattices (SWHLs)
and investigated their topological characteristics. We have
shown that the some basic structure features of the hierar-
chical lattices (HLs) are preserved, including degree dis-
tribution, clustering coefficient and fractality, while the
small-world phenomenon arises.

In addition, we have studied the dynamical processes
such as intention damage and collective synchronization
and have shown the comparisons between HLs and BA
networks as well as SWHLs. We have found that self-
similarity and disassortativity increase the robustness of
networks under intentional attacks. Some qualitative ex-
planations have been given showing that a fractal and dis-
assortative topology structure is more robust. Although
HLs and SWHLs have relative better robustness, they ex-
hibit poorer synchronizability than BA networks based
possibly on the same reasons as that of their insensitive-
ness to sabotage. We have shown that synchronizability
of scale-free networks is not an intrinsic property of the
exponent of degree distribution, and that small APL does
not imply good synchronizability.

In future, it would be worth searching for other
stochastic networks displaying finite fractal dimension
spectra. Moreover, it is more interesting that the pres-
ence of self-similarity and disassortativity, as well as the
absence of small-world properties of the HLs might have a
relevant effect on the other dynamic process such as epi-
demic spreading [84], routing traffic [85,86], games [87]
and transport [88] taking place on the networks.

This research was supported by the National Natural Science
Foundation of China under Grant Nos. 60496327, 60573183,
and 90612007, and the Postdoctoral Science Foundation of
China under Grant No. 20060400162.

Appendix A: Derivation of the average path
length for q=3

We denote the set of nodes constituting the hierarchical
lattices H(q, t) after t construction steps as Lq,t. Then the
APL for Lq,t is defined as:

d̄t =
Dt

Nt(Nt − 1)/2
, (A.1)

where
Dt =

∑

i�=j, i∈Lq,t, j∈Lq,t

dij (A.2)

denotes the sum of the chemical distances between two
nodes over all pairs, and dij is the chemical distance be-
tween nodes i and j. Although there are some difficulties
in obtaining a closed formula for d̄t holding true for all q,
the hierarchical lattices have a self-similar structure that
allows one to calculate d̄t analytically according to differ-
ent q. As shown in Figure A.1, the lattice Lq,t+1 may be
obtained by joining 2q copies of Lq,t at the hubs, which

are labeled as L
(α)
q,t , α = 1, 2, ..., 2q. Then we can write the

sum Dt+1 as
Dt+1 = 2q Dt + ∆t, (A.3)

where ∆t is the sum over all shortest paths whose end-
points are not in the same Lq,t branch. The solution of
equation (A.3) is

Dt = (2q)t−1D1 +
t−1∑

m=1

(2q)t−m−1∆m. (A.4)

The paths that contribute to ∆t must all go through at
least one of the q+2 edge nodes (for q = 3 see Figure A.1,
where A, B , C , D , E are the five edge nodes) at which
the different Lq,t branches are connected. The analytical
expression for ∆t for general q, called the crossing paths,
is not easy to derive. We trace the formula only for the
particular case of q = 3 as follows.

In what follows, we write L3,t as Lt for brevity. Denote
∆α,β

t as the sum of all shortest paths with endpoints in
L

(α)
t and L

(β)
t . If L

(α)
t and L

(β)
t meet at an edge node, ∆α,β

t

rules out the paths where either endpoint is that shared
edge node. If L

(α)
t and L

(β)
t do not meet, ∆α,β

t excludes
the paths where either endpoint is any edge node. Then
the total sum ∆t is

∆t = ∆1,2
t + ∆1,3

t + ∆1,4
t + ∆1,5

t + ∆1,6
t + ∆2,3

t

+∆2,4
t + ∆2,5

t + ∆2,6
t + ∆3,4

t + ∆3,5
t + ∆3,6

t

+∆4,5
t + ∆4,6

t + ∆5,6
t − 5 · 2t+1. (A.5)

The last term at the end compensates for the overcounting
of certain paths: the shortest path between A and B , with
length 2t+1, is included in ∆1,6

t , ∆2,5
t and ∆3,4

t ; the shortest
path between C and E , with length 2t+1, is included in
both ∆1,3

t and ∆4,6
t ; the shortest path between D and E ,

with length 2t+1, is included in both ∆2,3
t and ∆4,5

t ; the
shortest path between C and D , also with length 2t+1, is
included in both ∆1,2

t and ∆5,6
t .

By symmetry, ∆1,2
t = ∆1,3

t = ∆2,3
t = ∆5,6

t = ∆4,5
t =

∆4,6
t = ∆1,6

t = ∆2,5
t = ∆3,4

t and ∆1,4
t = ∆1,5

t = ∆2,4
t =

∆2,6
t = ∆3,5

t = ∆3,6
t , so that

∆t = 9∆1,2
t + 6∆1,4

t − 5 · 2t+1, (A.6)

where ∆1,2
t is given by the sum

∆1,2
t =

∑

i∈L
(1)
t , j∈L

(2)
t , i�=A, j �=A

dij

=
∑

i∈L
(1)
t , j∈L

(2)
t , i�=A, j �=A

(diA + dAj)

= (Nt − 1)
∑

i∈L
(1)
t

diA + (Nt − 1)
∑

j∈L
(2)
t

dAj

= 2(Nt − 1)
∑

i∈L
(1)
t

diA , (A.7)
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Fig. A.1. For q = 3, the hierarchical lattice after t + 1 con-
struction steps, Lt+1, is composed of six copies of Lt denoted

as L
(χ)
t (χ = 1, 2, · · · , 6), which are connected to one another

as above.

where
∑

i∈L
(1)
t

diA =
∑

j∈L
(2)
t

dAj have been used. To find∑
i∈L

(1)
t

diA, we examine the structure of the hierarchical

lattice at the tth level. In L
(1)
t , there is νt(m) points with

diA = m, where 1 ≤ m ≤ 2t, and νt(m) can be written
recursively as

νt(m) =

{
3t if m is odd
νt−1(

m

2
) if m is even.

(A.8)

We can write
∑

i∈L
(1)
t

diA in terms of νt(m) as

ft ≡
∑

i∈L
(1)
t

diA =
2t∑

m=1

m · νt(m). (A.9)

Equation (A.8) and (A.9) relate ft and ft−1, which allow
one to resolve ft by induction as follow:

ft =
2t−1∑

k=1

(2k − 1)3t +
2t−1∑

k=1

2k · νt−1(k)

= 3t22t−2 + 2ft−1

=
1
5
2t−2(14 + 6t+1) , (A.10)

where f1 = ν1(1)+2ν1(2) = 5 has been used. Substituting
equation (A.10) and Nt = 7+3×6t

5 into equation (A.7), we
obtain

∆1,2
t =

1
25

2t−1(3 × 6t + 2)(6t+1 + 14). (A.11)

Continue analogously,

∆1,4
t =

∑

i∈L
(1)
t , j∈L

(4)
t , i�=A,C, j �=B,E

dij

=
∑

i∈L
(1)
t , j∈L

(4)
t , i�=A, j �=E, diA+djE<2t

(diA+2t+djE)

+
∑

i∈L
(1)
t , j∈L

(4)
t , i�=C, j �=B, diC+djB<2t

(diC +2t+djB)

+
∑

i∈L
(1)
t , j∈L

(4)
t , i�=A, j �=E, diA+djE=2t

2t+1. (A.12)

The first term equal the second one and are denoted by
gt, and the third term is denoted by ht, so that ∆1,4

t =
2gt + ht. One can compute the quantity gt as

gt =
2t−2∑

m=1

2t−1−m∑

m′=1

νt(m)νt(m′)(m + 2t + m′)

=
2t−1−2∑

k=1

2t−1−1−k∑

k′=1

νt−1(k)νt−1(k′)(2k + 2t + 2k′)

+
2t−1−1∑

k=1

2t−1−k∑

k′=1

νt−1(k)3t(2k + 2t + 2k′ − 1)

+
2t−1−1∑

k=1

2t−1−k∑

k′=1

3tνt−1(k′)(2k − 1 + 2t + 2k′)

+
2t−1−1∑

k=1

2t−1−k∑

k′=1

32t(2k − 1 + 2t + 2k′ − 1). (A.13)

The fourth terms can be summed directly, yielding

32t2t−3(2t− 2)2 + 32t−12t−1(2t−1+ 1)(2t− 2).(A.14)

In equation (A.13), the second and third terms are equal
to each other and can be simplified by first summing over
k′, yielding

3t
∑2t−1−1

k=1 νt−1(k)(3 · 22t−2 − 2tk − k2). (A.15)

For use in equation (A.15),
∑2t−1−1

k=1 νt−1(k) = Nt−1 − 2,
and using equation (A.10),

2t−1−1∑

k=1

kνt−1(k) =
∑2t−1

k=1 kνt−1(k) − 2t−1

= 2t−3(6t − 6)/5. (A.16)

Similarly to equation (A.10), we get

2t−1−1∑

k=1

k2νt−1(k) =
1
5
4t−16t−1− 1

2
6t−1+

3
10

4t−1. (A.17)

With these results, equation (A.15) becomes

1
2
3t(2 · 4t−16t−1 − 3 · 4t−1 + 6t−1). (A.18)
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With equations (A.14) and (A.18), equation (A.13) be-
comes

gt = 2gt−1 + 1
63t6t4t − 1

63t6t − 3
43t4t + 2t−34t9t

− 1
24t9t + 1

22t9t. (A.19)

Considering the initial condition g1 = 0, we can solve
equation (A.19) inductively leading to

gt = − 3
852t−3(−171 + 17 · 2t+23t+1 + 5 · 2t+332t+1

−85 · 9t − 17 · 4t+19t). (A.20)

To find an expression for ∆1,4
t , now the only thing left is

to evaluate ht as

ht = 2t+1
2t−1∑

m=1

νt(m)νt(2t − m)

= 2t+1
2t−1∑

m=1

ν2
t (m)

= 2t+1

⎡

⎣
2t−1∑

k=1

9t +
2t−1−1∑

k=1

ν2
t−1(k)

⎤

⎦

= 62t + 2ht−1 , (A.21)

where we have used the the symmetry νt(m) = νt(2t−m).
Since h1 = 36, equation (A.21) is solved inductively:

ht =
9
17

2t+1(18t − 1). (A.22)

From equations (A.20) and (A.22),

∆1,4
t = − 3

85
2t−2(−171 + 17 · 2t+23t+1 + 5 · 2t+332t+1

− 85 · 9t − 17 · 4t+19t) +
9
17

2t+1(18t − 1). (A.23)

Substituting equations (A.11) and (A.23) into equa-
tion (A.6), we obtain the final expression for the crossing
paths ∆t:

∆t =
9
25

2t−1(2 + 3 · 6t)(14 + 6t+1)

− 9
85

2t−1(−171 + 17 · 2t+23t+1

+ 5 · 2t+332t+1 − 85 · 9t − 17 · 4t+19t)

+
54
17

2t+1(18t − 1) − 5 · 2t+1. (A.24)

Substituting equations (A.24) for ∆m into equation (A.4),
and using D1 = 14, we have

Dt =
1

2200
(1243 · 2t − 475 · 2t+23t + 275 · 2t+33t

+ 275 · 2t32t+1 + 19 · 23t+232t+1 − 11 · 3t+24t+1) (A.25)

Inserting equation (A.25) into equation (A.1), one can ob-
tain the analytical expression for d̄t in equation (25).
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83. K. Klemn, V.M. Egúıluz, Phys. Rev. E 65, 036123 (2002)
84. Z.Z. Zhang, S.G. Zhou, T. Zou (unpublished)
85. L. Zhao, Y.C. Lai, K. Park, N. Ye, Phys. Rev. E 71, 026125

(2005)
86. W.X. Wang, C.Y. Yin, G. Yan, B.H. Wang, Phys. Rev. E

74, 016101 (2006)
87. W.X. Wang, J. Ren, G.R. Chen, B.H. Wang, Phys. Rev.

E 74, 056113 (2006)
88. C.P. Zhu, S.J. Xiong, T. Chen, Phys. Rev. B 58, 12848

(1998)


